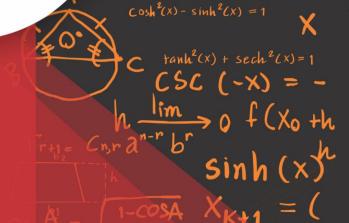


SUBDIRECCIÓN ACADÉMICA


Subdirection Académica
1.
$$P \rightarrow r$$
1. $P \land P \Rightarrow r$
2. $P \rightarrow r$
1. $P \land P \Rightarrow r$
2. $P \rightarrow r$
3. $P \lor P \Rightarrow r$
1. $P \land P \Rightarrow r$
1. $P \land P \Rightarrow r$
2. $P \rightarrow r$
1. $P \land P \Rightarrow r$
2. $P \rightarrow r$
3. $P \lor P \Rightarrow r$
3. $P \lor P \Rightarrow r$
4. $P \lor P \Rightarrow r$
5. $P \lor P \Rightarrow r$
5. $P \land P \Rightarrow r$
6. $P \land P \Rightarrow r$
6. $P \land P \Rightarrow r$
7. $P \land P \Rightarrow r$
8. $P \land P \Rightarrow r$
9. $P \land P \Rightarrow r$
1. $P \land P \Rightarrow r$
2. $P \land P \Rightarrow r$
3. $P \land P \Rightarrow r$
3. $P \land P \Rightarrow r$
4. $P \land P \Rightarrow r$
4

INDUCCIÓN **MATEMÁTICAS**

Exponentes y Radicales

Luis Miguel Cabrera González

Sech(x) = (/cosh(x) = a/(ex+e-x)

$$csch(x) = (e^{x}-e^{-x})/2 \frac{4}{4}$$

$$\sim \forall x [\sim p(x)] = \exists x [p(x)] \sim (p \land q) = \sim pv \sim q$$

$$\vec{U} + \vec{V} = \vec{V} + \vec{U}$$

$$x^{2} - 2ax + a^{2} = (x - a)^{2}$$

$$\vec{a}_{1} = \vec{a}_{1}r^{1-1} \quad \vec{a}_{1} = \frac{1}{a_{1} + (n-1)d}$$

Subdirección Académica

Facultad: Pregrado

Denominación del programa: Administración Pública AP

Nombre de la asignatura: Inducción Matemáticas

Modalidad1: Presencial - Distancia

Tipo de asignatura²:

Número de créditos³:

Horas de acompañamiento directo: Horas de trabajo independiente:

Nombre del autor: Luís Miguel Cabrera González

Asesoría Pedagógica y Control de calidad:

Fecha última versión: 20/06/2017

ISBN:978-958-652-842-9

¹ Presencial, distancia o virtual.

² Teórico-práctica o teórica.

³ Un crédito equivale a 48 horas distribuidas así: 12 horas de acompañamiento directo del docente y 36 horas de trabajo independiente, que involucra acompañamiento mediado y trabajo autónomo del estudiante (Decreto 1295 del 2010 y Decreto 1075 del 2015).

Subdirección Académica

CONTENIDO

UNIDAD DIDÁCTICA 2 – INDUCCIÓN MATEMÁTICAS EXPONENTES Y RADICALES	4
RESUMEN DE LA UNIDAD DIDÁCTICA	4
COMPETENCIAS DE LA UNIDAD DIDÁCTICA	5
CONTENIDOS DE LA UNIDAD DIDÁCTICA 2 – EXPONENTES Y RADICALES	5
TEMA 2. EXPONENTES Y RADICALES	5
CASO DE ESTUDIO	12
CONCLUSIONES	21
MATERIAL DE ESTUDIO	21
REFERENCIAS BIBLIOGRÁFICAS	22
GLOSARIO	24

Subdirección Académica

	7
%	
1	

LISTA DE TABLAS

Tabla 1. Exponentes diferentes a 0 y negativos	7
Tabla 2. Propiedades de los exponentes	
Tabla 3. Propiedades de los radicales	
Tabla 4. Operaciones no existentes	
Table in operationes no existences	

LISTA DE FIGURAS

Figura 1. Factores de a	
Figura 2 Jerarquía de las operaciones	1/

UNIDAD DIDÁCTICA 2 – INDUCCIÓN MATEMÁTICAS EXPONENTES Y RADICALES

RESUMEN DE LA UNIDAD DIDÁCTICA

El álgebra es una herramienta potente para resolver problemas complejos de manera general, siendo muy versátil al aplicarse a una variada gama de situaciones en la vida en general, razón por la cual, se hace énfasis en conceptos básicos como: Operaciones con Números reales, Exponentes y Radicales, Expresiones Algebraicas, Productos y Cocientes Notables y Factorización.

Los anteriores conceptos le permitirán al estudiante desarrollar habilidades para:

- Realizar operaciones con números reales utilizando propiedades fundamentales,
- Construir modelos aritméticos o algebraicos con números reales, y
- Utilizar razones, tasas, proporciones y variaciones para modelar y solucionar problemas económicos.

Las habilidades desarrolladas apuntan al mejoramiento de competencias profesionales para la modelación de procesos Económicos, Financieros, Contables, Ambientales, Geo-referenciales, Tecnológicos e investigativos, donde el establecimiento de relaciones entre variables fomenta el pensamiento lógico, algebraico, numérico y variacional, potenciando la creatividad e innovación.

Subdirección Académica

COMPETENCIAS DE LA UNIDAD DIDÁCTICA

ESTRUCTURA TEMÁTICA			
Nombre de la unidad didáctica	Competencia de aprendizaje de la unidad didáctica	Tema	Subtemas
Inducción Matemáticas Exponentes y Radicales	Comprende y aplica los conceptos básicos del álgebra como estrategia para resolver problemas complejos mediante la modelación de fenómenos cuantitativos de la Administración Pública.	2 Exponentes y Radicales	2.1 Exponentes 2.2 Radicales 2.3 Términos semejantes 2.4 El orden o jerarquía de las operaciones

CONTENIDOS DE LA UNIDAD DIDÁCTICA 2 - EXPONENTES Y RADICALES

TEMA 2. EXPONENTES Y RADICALES

2.1 EXPONENTES

Observemos que $\mathbf{a.a} = \mathbf{a^2}$, $\mathbf{a.a.a} = \mathbf{a^3}$ y en general, si \mathbf{n} es un entero positivo, se tiene:

Subdirección Académica

Figura 1. Factores de a

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{a \text{ como un factor } n \text{ veces}}$$

Fuente: Elaboración Propia.

UNIDAD DIDÁCTICA

Ejemplo 1:

a)
$$5^3 = 5.5.5 = 125$$

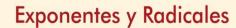
Un caso especial es: $a^1 = a$

b)
$$-5^2 = -5.5 = -25$$

c)
$$(-5)^2 = (-5) \cdot (-5) = 25$$

d)
$$(-\frac{1}{2})^2 = (-\frac{1}{2}) \cdot (-\frac{1}{2}) = \frac{1}{4}$$

Ejemplo 2:


a)
$$2.3^2 = 2.9 = 18$$

b)
$$-3.2^3 = -3.8 = -24$$

c)
$$5.(-2)^3 = 5.(-8) = -40$$

d) 8.
$$(-\frac{1}{2})^2 = 8$$
. $\frac{1}{4} = \frac{8}{4} = 2$

En el caso que el exponente sea cero o un número negativo, la base debe ser diferente de cero:

Base $a \neq 0$	Ejemplos	
$a^0 = 1$	2 ⁰ = 1	$\pi^{0} = 1$
$a^{-n} = \frac{1}{a^n}$	$2^{-3} = \frac{1}{2^3}$	$-2^{-3} = -\frac{1}{2^3}$

Fuente: Elaboración Propia.

En general, se tienen las siguientes propiedades:

Tabla 2. Propiedades de los exponentes

Propiedad	Ejemplo
$(a.b)^n = a^n.b^n$	$(2.3)^2 = 2^2.3^2 = 4.9 = 36$
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}$
$(a^n)^m = a^{n.m}$	$(2^2)^3 = 2^{2.3} = 2^6 = 64$
$a^n. a^m = a^{n+m}$	$2^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32$
$\frac{a^n}{a^m} = a^{n-m}$	$\frac{2^5}{2^3} = 2^{5-3} = 2^2 = 4$

Fuente: Elaboración Propia.

Simplificar una expresión que involucra potencias de números reales, significa expresarla de tal manera que cada número real aparezca una sola vez y cuyos exponentes sean positivos, donde los denominadores son diferentes de cero.

Ejemplo 3:

a)
$$(-2x^3y^{-2})(3x^{-1}y^5) = -2.3x^3x^{-1}y^{-2}y^5 = -6x^2y^3$$

b)
$$(a^{-2}b^3)^{-3} = (a^{-2})^{-3}(b^3)^{-3} = a^6b^{-9} = \frac{a^6}{b^9}$$

2.2 RADICALES

La raíz n-ésima de **a** se denota $\sqrt[n]{a} = a^{1/n}$, con n >1, es positiva si **a** es positiva y negativa si **a** es negativa y n es impar.

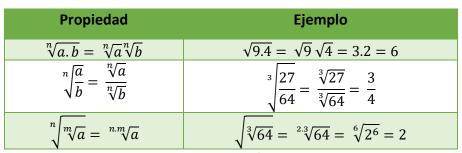
Ejemplo 1:

a)
$$\sqrt{16} = 4$$

b)
$$\sqrt[3]{-27} = -3$$

c) $\sqrt[4]{-64}$ no es un número real

d)
$$\sqrt{(-3)^2} = \sqrt{9} = 3$$
, se recomienda primero resolver la potencia. En general, $\sqrt[n]{a^n} = |a|$, $si\ a < 0\ y\ n\ es\ par$


En general, se tienen las siguientes propiedades:

Subdirección Académica

Fuente: Elaboración Propia.

Para tener presente: Las siguientes operaciones no existen

Tabla 4. Operaciones no existentes

$Si a \neq 0 y b \neq 0$	Contraejemplo
$\sqrt{a^2 + b^2} \neq a + b$	$\sqrt{3^2 + 4^2} = \sqrt{25} = 5 \neq 3 + 4 = 7$
$\sqrt{a+b} \neq a+b$	$\sqrt{16+9} = \sqrt{25} = 5 \neq 16+9 = 25$

Fuente: Elaboración Propia.

2.3 TÉRMINOS SEMEJANTES

Al eliminar símbolos de agrupación, se procede a eliminar los símbolos de agrupación más internos, teniendo en cuenta los respectivos signos.

Ejemplo 1. Simplifica

$$3 \{ 2a [a - 3] - 2 [3a^2 - 3 (2-3a)] \}$$
 $3 \{ 2a [a - 3] - 2 [3a^2 - 3 (2-3a)] \} = 3 \{ 2a^2 - 6a - 2 [3a^2 - 6 + 9a] \}$
 $= 3 \{ 2a^2 - 6a - 6a^2 + 12 - 18a \}$
 $= 3 \{ -4a^2 - 24a + 12 \}$
 $= -12a^2 - 72a + 36$

2.4 EL ORDEN O JERARQUÍA DE LAS OPERACIONES

Al realizar operaciones con números usualmente se presenta confusión al no diferenciar el orden o jerarquía en el cual se debe realizar la respectiva operación, por lo cual se recomienda tener presente:

Figura 2. Jerarquía de las operaciones

Paso 1.	Realice las operaciones dentro de los símbolos de agrupación (paréntesis,
	corchetes, valor absoluto, barra de división entre otros).
Paso 2.	Simplifique las expresiones con exponentes.

Paso 3. Realice las multiplicaciones y las divisiones como se presenten de izquierda a derecha.

Paso 4. Realice las sumas y las restas como se presenten de izquierda a derecha.

Fuente: Elaboración Propia.

Subdirección Académica

Ejemplo 1.

Simplifique
$$27 \div (6-3) - 4(6-8)^3$$

Solución

 $27 \div (6-3) - 4(6-8)^3 = 27 \div (3) - 4(-2)^3$ Se aplica el **paso 1**

Simplifique las

Realice las

operaciones

= $27 \div (3) - 4(-8)$ Se aplica **paso 2**

expresiones con

= 9 + 32 Se aplica paso 3

= 41 Se aplica el **paso 4**

Realice de izquierda a derecha las

Realice de izquierda a derecha las sumas y las

Subdirección Académica

Ejemplo 2.

Simplifique
$$\frac{4-16}{3} - 4\left(\frac{3-9}{2}\right) \div (-2)^3$$

Solución

$$\frac{4-16}{3} - 4\left(\frac{3-9}{2}\right) \div (-2)^3 = \frac{-12}{3} - 4\left(\frac{-6}{2}\right) \div (-2)^3 \text{ Se aplica paso 1}$$
$$= -4 - 4(-3) \div (-2)^3$$

 $= -4 - 4(-3) \div (-8)$ Se aplica el **paso 2**

 $= -4 + 12 \div (-8)$ se aplica el **paso 3**

 $= -4 - \frac{12}{8}$ Se aplica el **paso 4** $= -4 - \frac{3}{2}$ $= \frac{-8-3}{2}$ Realice de izqu

Realice de izquierda a derecha las sumas y las

Realice las operaciones dentro de los símbolos de agrupación (barras de fracciones y

Simplifique las expresiones con

Realice de izquierda a derecha las multiplicaciones y las

CASO DE ESTUDIO

• Ejercicios

Simplifique y exprese todas las respuestas en términos de exponentes positivos

$$1.(2^5)(2^{-3})$$

Subdirección Académica

$$2. \frac{\left(x^3\right)^5}{(x^{-2})^2}$$

$$3. \left(\frac{a^2b^5}{-ab^2}\right)^2$$

4.
$$(-2x^2y^{-1})^3$$

$$5. \frac{(x^2)^3 (x^3)^2}{(x^3)^4}$$

6.
$$(-4x^{-2}y^5 \div 2x^4y^2)^3$$

$$7.2^{3}$$

$$8.2^{-3}$$

$$9. -2^3$$

10.
$$(-2)^3$$

11. -2^{-3}

$$11. -2^{-}$$

12.
$$(-2)^{-3}$$

13.
$$\frac{\left(ab^{-3}c\right)^2}{\left(a^{-1}c^2\right)^{-3}}$$

14.
$$\frac{(x^2)^3}{(x^{-1})^2} \div \left[\frac{x^3}{(x^3)^{-2}}\right]^2$$

$$15. -\frac{6w^{-2}}{2w^3}$$

16.
$$\left\{ \left[(3b^2)^{\frac{1}{2}} \right]^{-2} \right\}^{-3}$$

17.
$$(4a^{-1}b^2c^4)^{\frac{3}{2}}$$

$$18. \frac{5^0}{\left(2^{-2} x^{\frac{1}{2}} y^{-2}\right)^2}$$

Evalúe y simplifique las expresiones siguientes expresando la respuesta como un radical (cuando sea posible)

Subdirección Académica

19.
$$\sqrt{50}$$

20.
$$\sqrt[3]{54}$$

21.
$$\sqrt{0.04}$$

22.
$$\sqrt[4]{\frac{81}{16}}$$

23.
$$\sqrt[3]{-\frac{8}{27}}$$

24.
$$(64)^{\frac{2}{3}}$$

25.
$$-9^{\frac{3}{2}}$$

26.
$$\sqrt{25x^6}$$

27.
$$8^{\frac{-2}{3}}$$

28.
$$\left(-\frac{27}{64}\right)^{\frac{2}{3}}$$

29.
$$(0.09)^{-\frac{1}{2}}$$

$$30.\left(\frac{27b^6}{8}\right)^{\frac{2}{3}}$$

31.
$$\sqrt[3]{x^2yz^9}$$
. $\sqrt[3]{x^4y^2}$

$$32.\sqrt{x}\sqrt{x^2y^3}\sqrt{xy^2}$$

$$33. \left(\sqrt[5]{x^2 y^3}\right)^{\frac{2}{5}}$$

Simplifique aplicando el orden o jerarquía de las operaciones

$$34.27 - 12 \div 3 - 5^2$$

$$35. -2.3^2 - 5(3 - 2^3)$$

36.
$$4^2 - 3(10 \div 5)^2 \div 5$$

Subdirección Académica

37.
$$2^5 - \{9 - 24 \div 3 \div 2\}^2$$

$$38.6 - 3(16 \div 4)^2$$

39.
$$12 - 3^2(5 - 16 \div 2^3)$$

40.
$$3^2 - 2(12 - 2^5 \div 4)$$

41.
$$3(4^2 - 3^4 \div 9)^2$$

42.
$$15 - 2\left(\frac{5^2 - 10}{3 - 2^3}\right)^2$$

Cuestionario

- 1. Al efectuar la operación $(2^7)(2^{-4})$, se obtiene:
 - a) 8
 - b) 5
 - c) 2
 - d) 10
- 2. Al simplificar la expresión $\frac{(x^3)^2}{(x^{-2})^2}$, se obtiene:
 - a) x^{10}
 - b) x^2
 - c) x^{-2}
 - d) x^5
- 3. Al efectuar la operación 3^{-2} , se obtiene:
 - a) 1/9
 - b) 9
 - c) -9
 - d) -6
- 4. Al efectuar la operación -3^{-2} , se obtiene:
 - a) -1/9

- b) -9
- c) 9
- d) 6
- 5. Al efectuar la operación $(-3)^{-2}$, se obtiene:
 - a) 1/9
 - b) -9
 - c) 9
 - d) 6
- 6. Al efectuar la operación -3^2 , se obtiene:
 - a) -9
 - b) 9
 - c) 1/9
 - d) -1/9
- 7. Al simplificar la expresión $(-3x^2y^{-1})^3$ se obtiene:
 - a) $-\frac{27x^6}{v^3}$
 - b) $-\frac{9x^6}{y^3}$
 - c) $\frac{27x^6}{v^3}$
 - d) $-27x^6y^3$
- 8. Al simplificar la expresión $\frac{(x^4)^3(x^3)^2}{(x^3)^3}$, se obtiene:
 - a) x^9
 - b) x^6

c)
$$x^{12}$$

d)
$$x^6$$

- 9. Al efectuar la operación $(-8x^{-2}y^5 \div 2x^{-4}y^2)^2$, se obtiene:
 - a) $16x^4y^6$
 - b) $-16x^4y^6$
 - c) $-4x^4y^6$
 - d) $4x^4y^6$
- 10. Al simplificar la expresión $\frac{\left(x^3\right)^2}{\left(x^{-1}\right)^{-2}} \div \left[\frac{x^{-3}}{\left(x^{-1}\right)^3}\right]^2$, se obtiene:
 - a) x^4
 - b) x^{-4}
 - c) x^2
 - d) x^{-2}
- 11. Al resolver la expresión $\left\{ \left[(3b^2)^{\frac{1}{2}} \right]^{-2} \right\}^{-2}$, se obtiene:
 - a) $9b^4$
 - b) $3b^2$
 - c) $3b^4$
 - d) $9b^{-1}$
- 12. Al realizar la operación $\sqrt{75}$, se obtiene:
 - a) $5\sqrt{3}$
 - b) $3\sqrt{5}$
 - c) $2\sqrt{5}$
 - d) $2\sqrt{3}$

- 13. Al efectuar la operación $\sqrt[3]{32}$, se obtiene:
 - a) $2\sqrt[3]{4}$
 - b) $8\sqrt[3]{4}$
 - c) $4\sqrt[3]{2}$
 - d) $-2\sqrt[3]{4}$
- 14. Al realizar la operación $\sqrt[3]{-\frac{27}{8}}$, se obtiene:
 - a) $-\frac{3}{2}$
 - b) $-\frac{2}{3}$
 - c)
 - d) $\frac{2}{3}$
- 15. Al efectuar la operación $(27)^{\frac{2}{3}}$,se obtiene:
 - a) 9
 - b) 3
 - c) -9
 - d) -3
- 16. Al resolver la expresión $\sqrt{0.09}$, se obtiene:
 - a) 0,3
 - b) 0,03
 - c) 3/100
 - d) 0,02
- 17. Al realizar la operación $-64^{\frac{2}{3}}$, se obtiene:
 - a) -16

- b) 16
- c) -4
- d) 4
- 18. Al efectuar la operación $\sqrt{36x^6}$, se obtiene:
 - a) $6x^{3}$
 - b) $6x^2$
 - c) $6x^4$
 - d) $2x^{3}$
- 19. Al resolver la expresión $\sqrt{x}\sqrt{x^2y^4}\sqrt{xy^2}$, se obtiene:
 - a) x^2y^3
 - b) x^3y^2
 - c) x^4y^6
 - d) 2xy
- 20. Al realizar la operación $(0,04)^{-\frac{1}{2}}$, se obtiene:
 - a) 5
 - b) 0,2
 - c) 1/5
 - d) 0,02
- 21. Al efectuar la operación $15 12 \div 3 3^2$, se obtiene:
 - a) 2
 - b) -2
 - c) 4
 - d) -3

- 22. Al resolver la expresión $-3.2^2 5(4 2^3)$, se obtiene:
 - a) 8
 - b) -2
 - c) 6
 - d) 4
- 23. Al realizar la operación $4^2 6(10 \div 5)^2 \div 3$, se obtiene:
 - a) 8
 - b) 4
 - c) 2
 - d) 6
- 24. Al efectuar la operación 2^5 $\{9-24\div 3\div 2\}^2$, se obtiene:
 - a) 7
 - b) 5
 - c) 4
 - d) 2
- 25. Al resolver la expresión $15 3\left(\frac{5^2 15}{3 2^3}\right)^2$, se obtiene:
 - a) 3
 - b) 5
 - c) 2
 - d) 6

CONCLUSIONES

Comprender los conceptos matemáticos básicos como insumo para resolver problemas complejos mediante la modelación de relaciones entre variables, permite abordar fenómenos económicos, financieros y logísticos presentes en la administración pública, con lo cual se promueve la toma de decisiones de manera racional, así como la gestión de recursos para satisfacer necesidades.

MATERIAL DE ESTUDIO

Tema que abordan	Referencia bibliográfica	Ubicación	
Tema 2 Exponentes y radicales	MateFacil (2015). Leyes de los radicales, con ejemplos (Lista completa). (22/07/17)	Disponible en: https://www.youtube.com/watch?v=GgV W0-Yre9Q	
	MateMovil (2017). Teoría de Exponentes - Ejercicios Resueltos - Nivel 1. (22/07/17)	Disponible en: https://www.youtube.com/watch?v=6m- Qzh3NDjk	
	MateMovil (2017). Teoría de Exponentes - Ejercicios Resueltos - Nivel 2A. (22/07/17)	Disponible en: https://www.youtube.com/watch?v=njtf AFTbjNs	

REFERENCIAS BIBLIOGRÁFICAS

REFERENCIAS BIBLIOGRÁFICAS DEL CONTENIDO DISCIPLINAR

Ángel, Allen. (2008). Álgebra intermedia. 7 Ed. Pearson Educación. México.

Arya, Jagdish., Lardner, Robin., Ibarra, Víctor. (2009). Matemáticas aplicadas a la Administración y Economía. 5 Ed. Prentice Hall. México.

Aufmann, Richard., Lockwood, Joanne. (2013). Álgebra intermedia. 8 Ed. Cengage Learning. México.

Haeussler, Ernest., Paul, Richard., Wood, Richard. (2008). Matemáticas para Administración y Economía. 12 Ed. Pearson – Prentice Hall. México.

Hernández, Hernán. (2004). Razonamiento Matemático. Estrategias en la resolución de problemas. 1 Ed. Editorial Ingenio S.A. Lima. Perú.

Hoffmann, Laurence., Bradley, Gerald., Rosen, Kenneth. (2006). Cálculo Aplicado para Administración, Economía y Ciencias Sociales. 8 Ed. McGraw-Hill. México.

Jiménez, René. (2011). Matemáticas 1 – Álgebra. 2 Ed. Prentice Hall. México.

Silva, Omar. (1994). Matemáticas Básicas. Universidad Externado de Colombia. Bogotá. Colombia.

Swokowski, Earl., Cole, Jeffery. (2011). Álgebra y Trigonometría. 13 Ed. Cengage Learning. México.

Subdirección Académica

Tan, Soo. (2012). Matemáticas Aplicadas a los Negocios, Las Ciencias Sociales y de la Vida. 5 Ed. Cengage Learning. México.

WEBGRAFÍA

Definición ABC (2017). Tu Diccionario Hecho Fácil. Disponible en: https://www.definicionabc.com/ (19/05/17)

Disfruta Las Matemáticas (2017). Diccionario ilustrado de Matemáticas. Disponible en: http://www.disfrutalasmatematicas.com/definiciones/index.html (12/05/17)

Profesor en Línea (2017). Tú ayuda para las tareas. Disponible en: http://www.profesorenlinea.cl/matematica/Indice general matematica.html (01/06/17)

Recursos TIC (2017). Ministerio de Educación, Formación Profesional y Universidades. España. Disponible en: http://recursostic.educacion.es/descartes/web/ (20/05/17)

Subdirección Académica

GLOSARIO

Conjunto: Colección de elementos enumerados entre llaves { }.

Exponente: El exponente de un número muestra cuántas veces el número se va a utilizar en la multiplicación.

Expresión: Números, símbolos y operadores (como + y ×) agrupados para mostrar el valor de algo.

Factorización: Factorizar una expresión (suma de términos) significa escribirla como producto de dos o más términos llamados factores, con el objetivo de simplificarla y así poder resolver ecuaciones.

Polinomio: Expresión algebraica cuyo exponente es un entero positivo.

Radical: Una expresión que tiene raíz cuadrada, raíz cúbica, etc.

Término: Es un número o una variable, o números y variables multiplicados.

Términos semejantes: Términos que tienen iguales variables (letras) e iguales exponentes.

Variable: Un símbolo para un número que aún no sabemos. Es normalmente una letra como x o y.